If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30a^2+13a=56
We move all terms to the left:
30a^2+13a-(56)=0
a = 30; b = 13; c = -56;
Δ = b2-4ac
Δ = 132-4·30·(-56)
Δ = 6889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6889}=83$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-83}{2*30}=\frac{-96}{60} =-1+3/5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+83}{2*30}=\frac{70}{60} =1+1/6 $
| -5v(2v-11)(v-11)=0 | | 4x=1.75 | | (x+25)+(x+24)=1 | | 4.5=3(y+1) | | x/6=4/10 | | 4(2v^2+17)-9v=7v(v+1)+4 | | 61.86+57.14-x-48=39 | | 8-7x+2+5x=32 | | 3(7+2w)=1÷2(-2-10w) | | (x+2)^2=-9 | | 17=1/5(20x15)-2x | | B(4-2h)=4(5-3h) | | x+49+x=1 | | z^2=-3z | | 9x+7=7+35 | | -9(d+2)=4(15-d) | | 2/9=3/2(4/9x+5) | | 7x-(3x-9)=29 | | 9=4t^2 | | 6d+4=10d-32 | | q^2-81=0 | | 1/12=x/8 | | 35q=5 | | 1/4y-9=1/6y | | -3(4b-10)=1/2(-24b+6) | | 4x+7=-8x+1 | | 2.3g=7.13 | | 3+5q=5-7q | | -20+3(x+4)=13x-6(x-4) | | 3+5a=5-7a | | j+5050=9999 | | x/4=-20/10 |